Aosite، ځکه 1993
لنډیز: د صفر-سخت انعطاف وړ کنډک گردشي سختی تقریبا صفر دی، کوم چې هغه نیمګړتیا له منځه وړي چې عادي انعطاف وړ قوه د موټر چلولو تورک ته اړتیا لري، او د انعطاف وړ ګریپرونو او نورو برخو کې پلي کیدی شي. د مثبت سختوالي سب سیسټم په توګه د خالص تورک د عمل لاندې د داخلي او بهرنۍ حلقې انعطاف وړ زنګونه اخیستل، د څیړنې د منفي سختوالي میکانیزم او د مثبت او منفي سختۍ سره سمون کولی شي د صفر سختۍ انعطاف وړ قبضه رامینځته کړي. د منفي سختوالي گردش میکانیزم وړاندیز کړئ——د کرینک پسرلي میکانیزم، د دې منفي سختۍ ځانګړتیاوې ماډل او تحلیل کړي؛ د مثبت او منفي سختۍ سره سمون خوري، د صفر سختوالي کیفیت باندې د کرینک پسرلي میکانیزم ساختماني پیرامیټونو اغیزه تحلیل کړه؛ د تخصیص وړ سختوالي او اندازې سره یو خطي پسرلی وړاندیز کړی——د الماس شکل لرونکي پاڼي د پسرلي تار، د سختوالي ماډل تاسیس شوی او د محدود عنصر سمولیشن تصدیق ترسره شوی؛ په نهایت کې ، د کمپیکٹ صفر سختۍ انعطاف وړ هینج نمونې ډیزاین ، پروسس او ازموینې بشپړې شوې. د ازموینې پایلو ښودلې چې: د خالص تورک عمل لاندې ،±18°د گردش زاویو په لړ کې، د صفر-سخت انعطاف وړ زاویې گردشي سختۍ په اوسط ډول د داخلي او بهرنۍ حلقې د انعطاف وړ زنګونو په پرتله %93 ټیټ دی. جوړ شوی د صفر سختۍ انعطاف وړ قبضه یو کمپیکٹ جوړښت او د لوړ کیفیت صفر سختی لري؛ وړاندیز شوی د منفي-سختوالي گردش میکانیزم او خطي پسرلي د انعطاف وړ میکانیزم مطالعې لپاره خورا ښه حواله ارزښت لري.
مخکتنه0
انعطاف وړ قوه (بیرنگ)
[1-2]
د حرکت، ځواک او انرژی د لیږد یا بدلولو لپاره د انعطاف وړ واحد په لچکدار اختر باندې تکیه کول، دا په پراخه کچه د دقیق موقعیت او نورو برخو کې کارول شوي. د دودیز سخت بیرنګونو سره پرتله کول، د آرامۍ شیبه شتون لري کله چې انعطاف وړ قبضه څرخیږي. له همدې امله ، د ډرایو واحد اړتیا لري چې د موټر چلولو لپاره د محصول تورک چمتو کړي او د انعطاف وړ قبضې گردش وساتي. د صفر سختۍ انعطاف منونکی قبضه
[3]
(Zero stiffness flexural pivot, ZSFP) یو انعطاف لرونکی روټری ګډ دی چې د گردش سختوالی تقریبا صفر دی. دا ډول انعطاف منونکی قبضه کولی شي د سټروک رینج دننه په هر ځای کې پاتې شي ، چې د جامد توازن انعطاف وړ قبضې په نوم هم پیژندل کیږي
[4]
، ډیری وختونه په ساحو کې کارول کیږي لکه انعطاف وړ ګریپرونه.
د انعطاف وړ میکانیزم د ماډلر ډیزاین مفکورې پراساس ، د صفر سخت انعطاف وړ قبضې سیسټم د مثبت او منفي سختوالي په دوه فرعي سیسټمونو ویشل کیدی شي ، او د صفر سختۍ سیسټم د مثبت او منفي سختوالي د سمون له لارې احساس کیدی شي.
[5]
. د دوی په منځ کې، د مثبت سختۍ فرعي سیسټم معمولا د لوی سټروک انعطاف وړ قبضه ده، لکه د کراس ریډ انعطاف وړ قبضه
[6-7]
، عمومي شوي درې کراس ریډ انعطاف وړ ځړول
[8-9]
او داخلي او بهرنۍ حلقه انعطاف وړ قندي
[10-11]
. په اوس وخت کې، د انعطاف وړ زنګونو په اړه څیړنې ډیرې پایلې ترلاسه کړې، له همدې امله، د صفر-سخت انعطاف وړ انعطاف وړ زنګونو ډیزاین کولو کلیدي د انعطاف وړ زنګونو لپاره د مناسب منفي سختوالي ماډلونو سره سمون لري [3].
د داخلي او خارجي حلقې انعطاف وړ زنګونه (د داخلي او خارجي حلقوي انعطاف وړ پیوټس، IORFP) د سختۍ، دقیقیت او د تودوخې د تودوخې له مخې غوره ځانګړتیاوې لري. د مطابقت لرونکي منفي سختۍ ماډل د صفر سختۍ انعطاف وړ قبضې ساختماني میتود چمتو کوي ، او په نهایت کې د صفر سختۍ انعطاف وړ قبضې ډیزاین ، نمونې پروسس او ازموینې بشپړوي.
1 کرینک پسرلی میکانیزم
1.1 د منفي سختۍ تعریف
د سختۍ عمومي تعریف K د لوچکي عنصر لخوا رامینځته شوي بار F او د ورته تخفیف dx ترمینځ د بدلون نرخ دی.
K= dF/dx (1)
کله چې د لچک لرونکي عنصر د بار زیاتوالی د اړونده خرابوالي زیاتوالي نښه سره مخالف وي، دا منفي سختی دی. په فزیکي توګه، منفي سختوالی د لچک لرونکي عنصر جامد بې ثباتۍ سره مطابقت لري
[12]
د انعطاف وړ جامد توازن په ساحه کې د منفي سختوالي میکانیزم مهم رول لوبوي. عموما، د منفي سختۍ میکانیزمونه لاندې ځانګړتیاوې لري.
(1) میکانیزم یو ټاکلی مقدار انرژي ذخیره کوي یا د یو ځانګړي تخریب څخه تیریږي.
(2) میکانیزم د بې ثباتۍ په جدي حالت کې دی.
(3) کله چې میکانیزم یو څه ګډوډ وي او د توازن موقعیت پریږدي، دا کولی شي لوی ځواک خوشې کړي، کوم چې د حرکت په څیر وي.
1.2 د صفر سختۍ د انعطاف وړ زنګ د جوړولو اصول
د صفر سختۍ انعطاف وړ قوه د مثبت او منفي سختوالي میچنګ په کارولو سره رامینځته کیدی شي ، او اصول په 2 شکل کې ښودل شوي.
(1) د خالص تورک د عمل لاندې، داخلي او بهرنۍ حلقې انعطاف وړ زنګونه تقریبا د خطي تورک - گردش زاویې اړیکه لري، لکه څنګه چې په 2a شکل کې ښودل شوي. په ځانګړې توګه، کله چې د تقاطع نقطه د ریډ اوږدوالی په 12.73٪ کې موقعیت لري، د تورک - گردش زاویه اړیکه خطي ده
[11]
په دې وخت کې، د انعطاف وړ قبضې د رغولو شیبه Mpivot (د ساعت په لور سمت) د بییرنګ گردش زاویه پورې اړه لريθ(د ساعت په مقابل کې) اړیکه ده
Mpivot=(8EI/L)θ (2)
په فورمول کې، E د موادو انعطاف ماډل دی، L د ریډ اوږدوالی دی، او I د برخې د نښتی شیبه ده.
(2) د داخلي او بهرنۍ حلقې انعطاف وړ کنډکونو د څرخيدونکي سختوالي ماډل له مخې، د منفي سختوالي څرخولو میکانیزم سره سمون لري، او د منفي سختوالي ځانګړتیاوې په 2b شکل کې ښودل شوي.
(3) د منفي سختۍ میکانیزم د بې ثباتۍ په نظر کې نیولو سره
[12]
د صفر سختۍ د انعطاف وړ زنګ سختوالی باید تقریبا صفر او له صفر څخه ډیر وي، لکه څنګه چې په 2c شکل کې ښودل شوي.
1.3 د کرینک پسرلي میکانیزم تعریف
د ادبياتو [4] له مخې، د صفر-سخت انعطاف وړ قوه د حرکت کونکي سخت بدن او د انعطاف وړ قوې د ثابت سخت بدن ترمینځ د مخکینۍ خراب شوي پسرلي په معرفي کولو سره رامینځته کیدی شي. د داخلي او بهرنۍ حلقې لپاره د انعطاف وړ ځړول په انځور کې ښودل شوي. 1، یو پسرلی د داخلي حلقې او بهرنۍ حلقې ترمنځ معرفي کیږي، د بیلګې په توګه، د پسرلي کرینیک میکانیزم (SCM) معرفي شوی. په 3 شکل کې ښودل شوي د کرینک سلیډر میکانیزم ته په اشارې سره، د کرینک پسرلي میکانیزم اړوند پیرامیټونه په 4 شکل کې ښودل شوي. د کرینک - پسرلي میکانیزم د کرینک او پسرلي څخه جوړ شوی دی (د k په توګه سختۍ تنظیم کړئ). لومړنۍ زاویه د کرینک AB او بیس AC تر مینځ شامل زاویه ده کله چې پسرلی خراب شوی نه وي. R د کرینک اوږدوالی استازیتوب کوي، l د اساس اوږدوالی استازیتوب کوي، او د کرینک اوږدوالی نسبت د r او l، I .e تناسب په توګه تعریفوي. = r/l (0<<1).
د کرینک - پسرلي میکانیزم جوړول د 4 پیرامیټونو ټاکلو ته اړتیا لري: د اساس اوږدوالی l، د کرینک اوږدوالی تناسب، لومړنۍ زاویه او د پسرلي سختۍ K.
د ځواک لاندې د کرینک پسرلي میکانیزم تخریب په 5a شکل کې ښودل شوی ، دا مهال M
&ګاما؛
د عمل لاندې، کرینک د AB له لومړني موقعیت څخه حرکت کوي
بیټا
AB ته وګرځئ
&ګاما؛
د څرخیدو پروسې په جریان کې ، د افقی موقعیت سره د کرینک شامل زاویه
&ګاما؛
د کرینک زاویه بلل کیږي.
کیفیتي تحلیل ښیي چې کرینک له AB (لومړني موقعیت، M & ګاما صفر) تر AB0 (“مړ ټکی”ځای، م
&ګاما؛
صفر دی) ، د کرینک - پسرلي میکانیزم د منفي سختوالي ځانګړتیاو سره خرابوالی لري.
1.4 د کرینک پسرلي میکانیزم د تورک او گردش زاویې ترمینځ اړیکه
په انځور کې. 5، تورک ایم & ګاما د ساعت په لور مثبت دی، د کرینک زاویه & ګاما د ساعت په مقابل کې مثبت دی، او د شیبې بار M لاندې ماډل شوی او تحلیل شوی.
&ګاما؛
د کرینک زاویه سره
&ګاما؛
د ماډلینګ پروسې ترمنځ اړیکه ابعاد لري.
لکه څنګه چې په 5b شکل کې ښودل شوي، د کرینک AB لپاره د تورک توازن مساوات & ګاما لیست شوی دی.
په فورمول کې، F & ګاما د پسرلي د رغولو ځواک دی & ګاما ایف دی & ګاما A ته اشاره کول فرض کړئ چې د پسرلي د بې ځایه کیدو بار اړیکه ده
په فورمول کې، K د پسرلي سختۍ ده (ضروري نه ده چې ثابت ارزښت ولري)δ
x&ګاما؛
د پسرلي اختراع مقدار دی (مثبت ته لنډ شوی)δ
x&ګاما؛
=|B
بیټا
C| – |B
&ګاما؛
C|.
یوځل ډول (3) (5)، دقیقه M
&ګاما؛
د کونج سره
&ګاما؛
اړیکه ده
1.5 د کرینک - پسرلي میکانیزم د منفي سختوالي ځانګړتیاو تحلیل
د کرینک - پسرلي میکانیزم د منفي سختوالي ځانګړتیاو تحلیل اسانه کولو لپاره (لمه M
&ګاما؛
د کونج سره
&ګاما؛
اړیکه)، داسې انګیرل کیدی شي چې پسرلی یو خطي مثبت سختی لري، نو بیا فورمول (4) بیا لیکل کیدی شي لکه څنګه چې
په فورمول کې، Kconst د صفر څخه لوی ثابت دی. وروسته له دې چې د انعطاف وړ قند اندازه وټاکل شي، د بیس اوږدوالی هم ټاکل کیږي. له همدې امله، فرض کړئ چې l یو ثابت دی، فورمول (6) بیا لیکل کیدی شي لکه
چیرته چې Kconstl2 د صفر څخه ډیر ثابت دی، او د شیبې کوفیکینټ m & ګاما یو ابعاد لري. د کرینک - پسرلي میکانیزم منفي سختۍ ځانګړتیاوې د تورک کوفیینټ m تر مینځ اړیکې تحلیل کولو سره ترلاسه کیدی شي. & ګاما او د گردش زاویه & ګاما
له معادلې (9) څخه، شکل 6 لومړنۍ زاویه ښیي =π د m ترمنځ اړیکه & ګاما او د کرینک اوږدوالی تناسب او د گردش زاویه & ګاما؛ & isin؛[0.1, 0.9],& ګاما& isin؛[0, π]. 7 شکل د m ترمنځ اړیکه ښیي & ګاما او د گردش زاویه & ګاما لپاره = 0.2 او مختلف. شکل 8 ښیي =π کله چې، د مختلف لاندې، د m ترمنځ اړیکه & ګاما او زاویه & ګاما
د کرینک پسرلي میکانیزم تعریف (برخه 1.3) او فارمول (9)، کله چې k او l ثابت وي، m & ګاما یوازې د زاویه پورې اړه لري & ګاما؛، د کرینک اوږدوالی تناسب او د کرینک لومړنۍ زاویه.
(1) که او یوازې که & ګاما د 0 یا سره برابر دیπ یا، م & ګاما د صفر سره برابر دی؛ & ګاما & isin؛[0, ],m & ګاما له صفر څخه لوی دی؛ & ګاما & isin؛[π]،م & ګاما له صفر څخه کم. & isin؛[0, ],m & ګاما له صفر څخه لوی دی؛ & ګاما& isin؛[π]،م & ګاما له صفر څخه کم.
(2) & ګاما کله چې [0، ]، د گردش زاویه & ګاما زیاتوي، m & ګاما له صفر څخه د انفلیکشن نقطې زاویه ته لوړیږي & ګاما؛ 0 اعظمي ارزښت m اخلي & ګاما؛ اعظمي، او بیا په تدریجي ډول کمیږي.
(3) د کرینک پسرلي میکانیزم منفي سختۍ ځانګړتیا رینج: & ګاما& isin؛[0, & gamma;0]، په دې وخت کې & ګاما زیاتوي (د ساعت په مقابل کې)، او تورک M & ګاما زیاتیږي (د ساعت په لور). د انفلیکشن نقطه زاویه & ګاما؛ 0 د کرینک - پسرلي میکانیزم د منفي سختوالي ځانګړتیاو اعظمي گردش زاویه ده او & ګاما0 & isin;[0, ];m & ګاما؛ max د منفي دقیقې اعظمي حد دی. ورکړل شوی او، د مساواتو اخستل (9) حاصلات & ګاما0
(4) لومړنۍ زاویه لویه وي، & ګاما لوی 0، m
&ګاما؛ اعظمي
لوی
(5) د اوږدوالي تناسب لوی، & ګاما کوچنی 0، m
&ګاما؛ اعظمي
لوی
په ځانګړې توګه، =πد کرینک پسرلي میکانیزم منفي سختۍ ځانګړتیاوې خورا غوره دي (د منفي سختوالي زاویه حد خورا لوی دی ، او تورک چې چمتو کیدی شي لوی دی). =πپه ورته وخت کې، د مختلفو شرایطو لاندې، د اعظمي گردش زاویه & د منفي سختۍ ګاما د کرینک پسرلي میکانیزم ځانګړتیا؛ 0 او اعظمي منفي torque کوفیینټ m & ګاما Max په جدول 1 کې لیست شوی.
پیرامیټر | ارزښت | ||||
د کرینک اوږدوالی تناسب | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
اعظمي د بدل زاویه & ګاما 0 /راډ | 0.98 | 0.91 | 0.84 | 0.76 | 0.68 |
د اعظمي شیبې کوفیینټ m &ګاما؛ اعظمي | 0.013 | 0.055 | 0.13 | 0.23 | 0.37 |
2 د صفر سختۍ انعطاف وړ ځړول
د 2.1 د مثبت او منفي سختوالي مطابقت په 9 شکل کې ښودل شوی، د موازي کرینک پسرلي میکانیزمونو n(n 2) ګروپونه په مساوي ډول د محیط په شاوخوا کې ویشل شوي، د منفي سختۍ میکانیزم جوړوي چې د داخلي او بهرنۍ حلقې انعطاف وړ کنډکونو سره سمون لري.
د مثبت سختوالي سب سیسټم په توګه د داخلي او بهرنۍ حلقې انعطاف وړ زنګونو په کارولو سره، د صفر سختۍ انعطاف وړ قبضه جوړه کړئ. د صفر سختۍ ترلاسه کولو لپاره، د مثبت او منفي سختۍ سره سمون خوري
په ورته وخت کې (2)، (3)، (6)، (11)، او & ګاما؛=θ، بار F & د پسرلي ګاما ترلاسه کیدی شي؛ او بې ځایه کیدلδد ایکس سره اړیکه & ګاما دی
د 1.5 برخې له مخې، د کرینک پسرلي میکانیزم د منفي سختۍ زاویه سلسله: & ګاما& isin؛[0, & gamma;0] او & ګاما0 & isin؛[0, ]، د صفر سختۍ د انعطاف وړ زنګ وهل باید له & gamma;0، I.e. پسرلی تل په خراب حالت کې وي (δx&ګاما؛&ne؛0). د داخلي او بهرنۍ حلقې د انعطاف وړ کنډکونو د گردش لړۍ ده±0.35 ریډ (±20°)، د trigonometric افعال ساده کول ګناه & ګاما او cos & ګاما ددې په تعقیب
د ساده کولو وروسته، د پسرلي د بار بې ځایه کیدو اړیکه
2.2 د مثبت او منفي سختوالي د سمون موډل د تېروتنې تحلیل
د مساوي ساده درملنې له امله رامینځته شوې غلطي ارزونه وکړئ (13). د صفر سختۍ د انعطاف وړ زنګ (4.2 برخه): n = 3، l = 40mm، =π, = 0.2,E = 73 GPa; د داخلي او بهرنۍ حلقې ابعاد د انعطاف وړ هینج ریډ L = 46mm،T = 0.3mm،W = 9.4mm؛ د پرتله کولو فورمولونه (12) او (14) د بار بې ځایه کیدو اړیکه او د مخکینۍ او شا چینې نسبي تېروتنه ساده کوي لکه څنګه چې په ترتیب سره په 10a او 10b شکل کې ښودل شوي.
لکه څنګه چې په 10 شکل کې ښودل شوي، & ګاما د 0.35 ریډ څخه کم دی (20°)، د بار د بې ځایه کیدو منحني ته د ساده درملنې له امله رامینځته شوې نسبي تېروتنه له 2.0٪ څخه زیاته نه وي، او فورمول
د (13) ساده درملنه د صفر سختۍ انعطاف وړ زنګونو جوړولو لپاره کارول کیدی شي.
2.3 د پسرلي د سختوالي ځانګړتیاوې
فرض کړئ چې د پسرلي سختۍ K وي، په ورته وخت کې (3)، (6)، (14)
د صفر سختوالي انعطاف وړ قبضې (4.2 برخه) د اصلي پروسس پیرامیټرونو له مخې ، د پسرلي سختۍ K د زاویې سره د بدلون وکر & ګاما په 11 شکل کې ښودل شوی. په ځانګړې توګه، کله چې & ګاما؛ = 0، K لږ تر لږه ارزښت اخلي.
د ډیزاین او پروسس کولو اسانتیا لپاره، پسرلی یو خطي مثبت سختی پسرلی غوره کوي، او سختی Kconst دی. په ټول سټروک کې، که چیرې د صفر سختۍ انعطاف وړ پوټکي ټول کلکوالی له صفر څخه ډیر یا مساوي وي، Kconst باید د K لږترلږه ارزښت واخلي.
مساوات (16) د لینیر مثبت سختۍ پسرلي د سختوالي ارزښت دی کله چې د صفر سختۍ انعطاف وړ قبضه جوړه کړي. 2.4 د صفر سختوالي کیفیت تحلیل
په ورته وخت کې فورمول (2)، (8)، (16) ترلاسه کیدی شي
د صفر سختوالي کیفیت ارزولو لپاره، د منفي سختۍ ماډل اضافه کولو دمخه او وروسته د انعطاف وړ هینګ سختۍ کمولو سلسله د صفر سختوالي کیفیت ضمیمه په توګه تعریف شوې.η
η څومره چې 100٪ ته نږدې وي، د صفر سختۍ کیفیت لوړ وي. انځور 12 دی 1-η د کرینک اوږدوالی تناسب او ابتدايي زاویه سره اړیکه η دا د موازي کرینک - پسرلي میکانیزمونو n شمیر او د بیس د اوږدوالي l څخه خپلواک دی ، مګر یوازې د کرینک اوږدوالي تناسب ، د گردش زاویې پورې اړه لري & ګاما او لومړنۍ زاویه
(1) ابتدايي زاویه زیاتیږي او د صفر سختوالي کیفیت ښه کیږي.
(2) د اوږدوالي تناسب زیاتیږي او د صفر سختوالي کیفیت کمیږي.
(۳) زاویه & ګاما زیاتیږي، د صفر سختوالي کیفیت کمیږي.
د صفر سختۍ د انعطاف وړ زنګ د صفر سختوالي کیفیت ښه کولو لپاره، لومړنۍ زاویه باید لوی ارزښت واخلي؛ د کرینک اوږدوالی تناسب باید د امکان تر حده کوچنی وي. په ورته وخت کې، په 1.5 برخه کې د تحلیل پایلو سره سم، که چیرې خورا کوچنی وي، د منفي سختۍ چمتو کولو لپاره د کرینک - پسرلي میکانیزم وړتیا به ضعیف وي. د صفر سختۍ د انعطاف وړ زنګ د صفر سختوالي کیفیت ښه کولو لپاره، لومړنۍ زاویه =π، د کرینک اوږدوالی تناسب = 0.2، دا دی، د برخې 4.2 د صفر سختۍ انعطاف وړ قند اصلي پروسس پیرامیټونه.
د صفر-سخت انعطاف وړ زنګ (برخه 4.2) د اصلي پروسس کولو پیرامیټرونو له مخې ، د داخلي او بهرني حلقې انعطاف وړ زنګونو او د صفر سختۍ انعطاف وړ قبضې ترمینځ د تورک زاویه اړیکه په 13 شکل کې ښودل شوې؛ د سختوالي کمښت د صفر سختوالي کیفیت کوفینټ دیηد کونج سره اړیکه & ګاما په 14 شکل کې ښودل شوی. د 14 شکل له مخې: په 0.35 ریډ کې (20°) د څرخولو سلسله، د صفر سختۍ انعطاف وړ زنګ سختوالی په اوسط ډول د 97٪ لخوا کم شوی؛ 0.26 ریډ (15°) کونجونه، دا د 95٪ لخوا کم شوي.
3 د خطي مثبت سختوالي پسرلي ډیزاین
د صفر سختۍ انعطاف وړ قوه جوړونه معمولا وروسته له هغه کیږي چې د انعطاف وړ قبضې اندازه او سختۍ وټاکل شي ، او بیا د پسرلي سختی د کرینک پسرلي میکانیزم کې بدلیږي ، نو د پسرلي د سختوالي او اندازې اړتیاوې نسبتا سختې دي. برسېره پردې، لومړنۍ زاویه =πد 5a شکل څخه، د صفر-سختوالي انعطاف وړ قبضې د گردش په جریان کې، پسرلی تل په فشار شوي حالت کې وي، دا دی“کمپریشن پسرلی”.
د دودیز کمپریشن سپرینګ سختۍ او اندازه په دقیق ډول تنظیم کول ګران دي، او ډیری وختونه په غوښتنلیکونو کې د لارښود میکانیزم ته اړتیا لیدل کیږي. له همدې امله، یو پسرلی چې سختوالی او اندازه یې تنظیم کیدی شي وړاندیز شوی——د الماس شکل لرونکي پاڼي د پسرلي تار. د الماس په شکل د پاڼي د پسرلي تار (شکل 15) د ډیری الماس په شکل د پاڼو له چینو څخه جوړ شوی دی چې په لړۍ کې وصل شوي. دا د وړیا ساختماني ډیزاین او د دودیز کولو لوړې درجې ځانګړتیاوې لري. د دې پروسس کولو ټیکنالوژي د انعطاف وړ زنګونو سره مطابقت لري ، او دواړه د دقیق تار پرې کولو سره پروسس کیږي.
3.1 د الماس شکل لرونکي پاڼي د پسرلي تار د بار کولو بې ځایه کولو ماډل
د رومبیک پاڼی د پسرلی د هماهنګی له کبله، یواځی یو پاڼی پسرلی د فشار تحلیل ته اړتیا لری، لکه څنګه چی په 16 شکل کی ښودل شوی. α د ریډ او افقی تر مینځ زاویه ده، د ریډ اوږدوالی، عرض او ضخامت په ترتیب سره Ld، Wd، Td دي، f د رومبس پاڼی په پسرلي کې د ابعادي متحد بار دی،δy په y لوري کې د رومبیک پاڼي د پسرلي خرابوالی دی، د fy او لمحې m د واحد ریډ په پای کې مساوي بارونه دي، fv او fw د wov همغږي سیسټم کې د fy اجزاو ځواکونه دي.
د AWTAR [13] د بیم خرابولو تیورۍ له مخې، د واحد ریډ د ابعادي متحد بار بې ځایه کیدو اړیکه
په ریډ باندې د سخت بدن د محدودیت د اړیکو له امله، د ریډ پای زاویه د خرابیدو دمخه او وروسته صفر ده، دا دیθ = 0. په ورته وخت کې (20) (22)
مساوات (23) د رومبیک پاڼی د پسرلی د بار او بې ځایه کیدو ابعادی یووالی موډل دی. n2 د رومبیک پاڼی چشمې په لړۍ کې سره وصل دي، او د بار بار بې ځایه کیدو ماډل دی
له (۲۴) فورمول څخه، کلهαکله چې d کوچنی وي، د الماس په شکل د پاڼي د پسرلي تار سختوالی د عادي ابعادو او عادي بارونو لاندې تقریبا خطي وي.
3.2 د ماډل بشپړ عنصر سمولیشن تصدیق
د الماس شکل لرونکي پاڼي پسرلي د بار بې ځایه کیدو ماډل محدود عنصر سمولیشن تصدیق ترسره کیږي. د ANSYS میخانیکي APDL 15.0 په کارولو سره، د سمولو پارامترونه په 2 جدول کې ښودل شوي، او د 8 N فشار د الماس شکل لرونکي پاڼي پسرلي باندې تطبیق کیږي.
پیرامیټر | ارزښت |
ماده: | AL7075-T6 |
د ریډ اوږدوالی L د /mm | 18 |
د ریډ پلنوالی W د /mm | 10 |
د ریډ ضخامت T د /mm | 0.25 |
د ریډ انډول زاویهα/° | 10/20/30/40 |
لچک وړ ماډل E/GPa | 73 |
د موډل پایلو او د rhombus پاڼی د پسرلي بار بار بې ځایه کیدو اړیکو د سمولو پایلو ترمنځ پرتله کول په انځور کې ښودل شوي. 17 ( ابعاد ) . د څلور رمبوس پاڼی چینو لپاره چې د مختلف تمایل زاویې لري، د ماډل او محدود عنصر سمولیشن پایلو ترمنځ نسبي تېروتنه له 1.5٪ څخه زیاته نه وي. د ماډل اعتبار او دقت (24) تایید شوی.
4 د صفر-سختوالي انعطاف وړ قبضې ډیزاین او ازموینه
4.1 د صفر سختوالي انعطاف وړ قاب د پیرامیټر ډیزاین
د صفر سختۍ انعطاف وړ قبضې ډیزاین کولو لپاره ، د انعطاف وړ ککۍ ډیزاین پیرامیټونه باید لومړی د خدماتو شرایطو سره سم وټاکل شي ، او بیا د کرینک پسرلي میکانیزم اړوند پیرامیټونه باید په برعکس محاسبه شي.
4.1.1 د انعطاف وړ قاب پارامترونه
د داخلي او بهرنۍ حلقې انعطاف وړ قطبونو د تقاطع نقطه د ریډ اوږدوالی 12.73٪ کې موقعیت لري، او د هغې پیرامیټونه په 3 جدول کې ښودل شوي. په مساوي (2) کې ځای په ځای کول، د داخلي او بهرنۍ حلقې د انعطاف وړ کنډکونو د تورک - گردش زاویه اړیکه ده
پیرامیټر | ارزښت |
ماده: | AL7075-T6 |
د ریډ اوږدوالی L/mm | 46 |
د ریډ پلنوالی W/mm | 9.4 |
د ریډ ضخامت T/mm | 0.30 |
لچک وړ ماډل E/GPa | 73 |
4.1.2 د منفي سختوالي میکانیزم پیرامیټونه
لکه څنګه چې په انځور کې ښودل شوي. 18، د کرینک پسرلي میکانیزمونو نمبر n په موازي توګه د 3 په توګه اخیستل، اوږدوالی l = 40 mm د انعطاف وړ قند د اندازې له مخې ټاکل کیږي. د 2.4 برخې د پای ته رسیدو سره سم، لومړنۍ زاویه =πد کرینک اوږدوالی تناسب = 0.2. د (۱۶) معادلې له مخې، د پسرلي سختوالی (زه. د الماس پاڼی د پسرلی تار) کیکونسټ = 558.81 N/m (26)
4.1.3 د الماس پاڼی د پسرلی تار پارامترونه
لخوا l = 40mm، =π، = 0.2، د پسرلي اصلي اوږدوالی 48mm دی، او اعظمي خرابوالی (& ګاما؛ = 0) 16mm دی. د ساختماني محدودیتونو له امله، دا ستونزمنه ده چې د یو واحد رومبس پاڼی پسرلی دومره لوی اختر پیدا کړي. په لړۍ (n2 = 4) کې د څلورو rhombus پاڼي د پسرلي په کارولو سره، د یو واحد رومبس پاڼي د پسرلي سختی
Kd=4Kconst=2235.2 N/m (27)
د منفي سختوالي میکانیزم د اندازې له مخې (شکل 18)، د الماس شکل لرونکي پاڼي پسرلي د سرې اوږدوالی، عرض او د سرې د زاویې زاویې ته په پام سره، سرک د فارمول (23) او د سختوالي فورمول (27) څخه محاسبه کیدی شي. د الماس شکل لرونکي پاڼي د پسرلي ضخامت. د رومبس پاڼی د چشمو ساختمانی پیرامیټونه په 4 جدول کی لیست شوی دی.
سطح4
په لنډیز کې، د کرینک پسرلي میکانیزم پراساس د صفر-سخت انعطاف وړ هینګ پیرامیټونه ټول ټاکل شوي، لکه څنګه چې په 3 جدول او 4 جدول کې ښودل شوي.
4.2 د صفر-سخت انعطاف وړ انعطاف نمونې ډیزاین او پروسس کول د انعطاف وړ قبضې د پروسس او ازموینې میتود لپاره ادب ته مراجعه وکړئ [8]. د صفر سختۍ انعطاف وړ قبضه د منفي سختوالي میکانیزم او په موازي ډول د داخلي او بهرنۍ حلقې انعطاف وړ قبضې څخه جوړه شوې ده. ساختماني ډیزاین په 19 شکل کې ښودل شوی.
دواړه داخلي او بهرنۍ حلقې انعطاف وړ قندي او د الماس شکل لرونکي پاڼي پسرلي تارونه د دقیق تار پرې کولو ماشین وسیلو لخوا پروسس کیږي. داخلي او بهرنۍ حلقه انعطاف وړ قوه پروسس کیږي او په پرتونو کې راټولیږي. 20 شکل د الماس په شکل د پاڼي د پسرلي تارونو د دریو سیټونو فزیکي انځور دی، او 21 شکل د صفر کلکوالی راټول شوی د انعطاف وړ قبضې نمونې فزیکي انځور دی.
4.3 د صفر-سختوالي انعطاف وړ قبضې د څرخي سختۍ ازموینې پلیټ فارم په [8] کې د څرخي سختۍ ازموینې میتود ته په اشارې سره ، د صفر سختۍ انعطاف وړ قبضې د گردشي سختۍ ازموینې پلیټ فارم جوړ شوی ، لکه څنګه چې په 22 شکل کې ښودل شوي.
4.4 د تجربوي معلوماتو پروسس کول او د تېروتنې تحلیل
د داخلي او بهرنۍ حلقې انعطاف وړ زنګونو او د صفر سختۍ انعطاف وړ زنګونو گردشي سختی د ازموینې پلیټ فارم کې ازمول شوی ، او د ازموینې پایلې په 23 شکل کې ښودل شوي. د فارمول (19) له مخې د صفر-سختوالي انعطاف وړ زنګ د صفر-سختوالي کیفیت وکر محاسبه او رسم کړئ، لکه څنګه چې په انځور کې ښودل شوي. 24.
د ازموینې پایلې ښیي چې د صفر سختۍ انعطاف وړ کنډک گردشي سختۍ صفر ته نږدې دی. د داخلي او بهرنۍ حلقې د انعطاف وړ زنګونو سره پرتله کول، د صفر سختۍ انعطاف وړ قبضه±0.31 ریډ (18°) سختی په اوسط ډول د 93٪ لخوا کم شوی؛ 0.26 ریډ (15°)، سختوالی 90٪ کم شوی.
لکه څنګه چې په 23 او 24 شکلونو کې ښودل شوي، لاهم د صفر سختۍ کیفیت او د تیوریکي ماډل پایلو د ازموینې پایلو ترمنځ یو مشخص واټن شتون لري (نسباتي تېروتنه له 15٪ څخه کمه ده)، او د غلطۍ اصلي لاملونه په لاندې ډول دي.
(1) د ماډل تېروتنه د مثلثومیتریک دندو د ساده کولو له امله رامینځته شوې.
(۲) تکړه. د الماس پاڼی د پسرلی تار او د پورته کیدونکی شافټ تر منځ ټکر شتون لري.
(3) د پروسس تېروتنه. د ریډ په ریښتیني اندازې کې غلطۍ شتون لري ، او داسې نور.
(4) د مجلس تېروتنه. د الماس په شکل د پاڼي د پسرلي تار او شافټ د نصب کولو سوري ترمینځ تشه ، د ازموینې پلیټ فارم وسیلې نصب کولو تشه ، او داسې نور.
4.5 د عادي صفر-سخت انعطاف وړ زنګ سره د فعالیت پرتله کول په ادبیاتو کې [4]، د صفر سختۍ انعطاف وړ قبضه ZSFP_CAFP د کراس محور انعطاف وړ پیوټ (CAFP) په کارولو سره رامینځته شوی ، لکه څنګه چې په 25 شکل کې ښودل شوي.
د صفر-سختوالي انعطاف وړ قبضې پرتله کول ZSFP_IORFP (انځور. 21) او ZSFP_CAFP (انځور. 25) د داخلي او بهرنۍ حلقې د انعطاف وړ قندونو په کارولو سره جوړ شوی
(1) ZSFP_IORFP، جوړښت ډیر کمپیکٹ دی.
(2) د ZSFP_IORFP کونج رینج کوچنی دی. د کونج سلسله پخپله د انعطاف وړ ځغاستې د کونج حد پورې محدود ده؛ د ZSFP_CAFP د کونج سلسله80°, ZSFP_IORFP کونج رینج40°.
(3) ±18°د کونجونو په لړ کې، ZSFP_IORFP د صفر سختوالي لوړ کیفیت لري. د ZSFP_CAFP منځنۍ سختۍ 87٪ کمه شوې، او د ZSFP_IORFP منځنۍ سختۍ 93٪ کمه شوې.
پایله5
د خالص تورک لاندې د داخلي او خارجي حلقو انعطاف وړ قوه د مثبت سختوالي فرعي سیسټم په توګه اخیستل ، لاندې کار د صفر سخت انعطاف وړ قند جوړولو لپاره ترسره شوی.
(1) د منفي سختوالي گردش میکانیزم وړاندیز کړئ——د کرینک پسرلي میکانیزم لپاره، یو ماډل (فارمول (6)) رامینځته شوی ترڅو د جوړښتي پیرامیټرو اغیزې د دې منفي سختوالي ځانګړتیاو باندې تحلیل کړي، او د دې د منفي سختوالي ځانګړتیاو سلسله ورکړل شوې وه (جدول 1).
(2) د مثبت او منفي سختۍ سره په مطابقت سره، د کرینک پسرلي میکانیزم (مساوات (16)) کې د پسرلي د سختوالي ځانګړتیاوې ترلاسه کیږي، او ماډل (مساوات (19)) د ساختماني پیرامیټونو اغیزې تحلیل کولو لپاره رامینځته کیږي. د کرینک پسرلي میکانیزم د صفر سختوالي کیفیت د صفر سختوالي انعطاف وړ قوه نفوذ، په تیوريکي توګه، د داخلي او خارجي حلقو د انعطاف وړ قبضې د شتون په جریان کې (±20°)، د سختۍ منځنۍ کمښت کولی شي 97٪ ته ورسیږي.
(3) د دودیز وړ سختۍ وړاندیز وکړئ“پسرلی”——د الماس په شکل د پاڼي د پسرلي تار د دې د سختوالي ماډل (مساوات (23)) رامینځته کولو لپاره رامینځته شوی او د محدود عنصر میتود لخوا تایید شوی.
(4) د کمپیکٹ صفر سختۍ انعطاف وړ هینج نمونې ډیزاین ، پروسس او ازموینې بشپړې کړې. د ازموینې پایلې ښیې چې: د خالص تورک عمل لاندې ، د36°د گردش زاویو په لړ کې، د داخلي او بهرنۍ حلقې انعطاف وړ قطبونو په پرتله، د صفر-سختوالي انعطاف وړ زنګونو سختوالی په اوسط ډول د 93٪ لخوا کم شوی.
جوړ شوی د صفر سختۍ انعطاف وړ قبضه یوازې د خالص تورک عمل لاندې ده ، کوم چې احساس کولی شي“صفر سختی”، پرته له دې چې د پیچلي بار کولو شرایط برداشت کړي. له همدې امله، د پیچلي بار شرایطو لاندې د صفر سختۍ انعطاف وړ زنګونو جوړول د نورو څیړنو تمرکز دی. برسېره پردې، د صفر سختۍ د انعطاف وړ قطبونو د حرکت په جریان کې د رقابت کمول د صفر سختۍ انعطاف وړ زنګونو لپاره د اصلاح کولو مهم اړخ دی.
حوالې
[1] HOWELL L L. موافق میکانیزمونه[M]. نیویارک: جان ویلی&سنز، انک، ۲۰۰۱.
[2] یو جینګ جون، پی سو، بی شوشین، او داسې نور. د انعطاف وړ قبضې میکانیزم د ډیزاین میتودونو په اړه د څیړنې پرمختګ[J]. د میخانیکي انجینرۍ چینایي ژورنال، 2010، 46(13):2-13. Y u jin اتل، PEI X U، BIS کال، ETA پورته. د انعطاف میکانیزمونو لپاره د ډیزاین میتود عصري میتود[J]. د میخانیکي انجینرۍ ژورنال، 2010، 46(13):2-13.
[3] مورش ایف ایم، هیرډر ج ایل. د عمومي صفر سختۍ سره مطابقت لرونکي ګډ ډیزاین [C]// ASME نړیوال ډیزاین انجینري کنفرانسونه. 2010:427-435.
[4] میرریم ای جی، هاویل ایل ایل. د حرکتي انعطاف جامد توازن لپاره غیر ابعادي چلند [J]. میکانیزم & د ماشین تیوري، 2015، 84(84):90-98.
[5] HOETMER K، Woo G، Kim C، et al. د ثبات لرونکي متوازن تعمیل میکانیزمونو لپاره د منفي سختۍ ودانۍ بلاکونه: ډیزاین او ازموینه [J]. د میکانیزم ژورنال & روبوټکس، 2010، 2(4): 041007.
[6] جینسن بی ډي، هاویل ایل ایل. د کراس محور انعطاف وړ محورونو ماډلینګ[J]. د میکانیزم او ماشین تیوري، 2002، 37(5):461-476.
[7] WITTRICK W H. د کراس شوي انعطاف محور ملکیتونه او د هغه نقطې نفوذ چې له هغې څخه پټې تیریږي [J]. د ایروناټیکل درې میاشتنۍ، 1951، II: 272-292.
[8] l IU l، BIS، yang Q، ETA. په الټرا دقیق وسیلو کې پلي شوي د عمومي شوي درې اړخیز - کراس - پسرلي انعطاف محور ډیزاین او تجربه [J]. د ساینسي وسایلو بیاکتنه، 2014، 85(10): 105102.
[9] یانګ کیزی، لیو لانګ، بی شوشینګ او داسې نور. د عمومي درې کراس ریډ انعطاف وړ قبضې [J] د گردشي سختوالي ځانګړتیاو په اړه څیړنه. د میخانیکي انجینرۍ چینایي ژورنال، 2015، 51(13): 189-195.
yang Q I کلمه، l IU Lang، BIS غږ، ETA. د عمومي شوي درې اړخیز کراس پسرلي انعطاف محورونو گردشي سختۍ ځانګړتیا[J]. د میخانیکي انجینرۍ ژورنال، 2015، 51(13):189-195.
[10] l IU l، Zhao H، BIS، ETA. د کراس - پسرلي فلیکسور پیوټس [C]// ASME 2014 نړیوال ډیزاین انجینري تخنیکي کنفرانسونه او کمپیوټرونه او معلومات په انجینرۍ کنفرانس کې د ټوپولوژي جوړښت پرتله کولو فعالیت څیړنه، اګست 17–20, 2014, Buffalo, New York, USA. ASME, 2014 : V05AT08A025.
[11] l IU l، BIS، yang Q. د داخلي سختوالي ځانګړتیاوې–د بهرنۍ حلقې انعطاف محور په الټرا دقیق وسیلو باندې پلي کیږي [J]. د میخانیکي انجینرانو د انسټیټیوټ د آرشیف پروسې برخه C د میخانیکي انجینرۍ ساینس ژورنال 1989-1996 (جلسه 203-210)، 2017:095440621772172.
[12] SANCHEZ J A G. د مطابقت لرونکي میکانیزمونو د جامد توازن لپاره معیارونه[C]// ASME 2010 نړیوال ډیزاین انجینري تخنیکي کنفرانسونه او کمپیوټر او معلومات په انجینرۍ کنفرانس کې، اګست 15–18، 2010، مونټریال، کیوبیک، کاناډا. ASME, 2010:465-473.
[13] AWTAR S، Sen S. د دوه اړخیز بیم انعطاف لپاره د عمومي محدودیت ماډل: غیر خطي فشار انرژي جوړښت [J]. د میخانیکي ډیزاین ژورنال، 2010، 132: 81009.
د لیکوال په اړه: بی شوشینګ (مثبت لیکوال)، نارینه، په 1966 کې زیږیدلی، ډاکټر، پروفیسور، دوکتورا څارونکی. د هغه اصلي څیړنه په بشپړ ډول انعطاف وړ میکانیزم او بایونک روبوټ دی.
د کرینک پسرلي میکانیزم پراساس د صفر سختۍ انعطاف وړ قبضه یو نوښتګر او انقلابي ټیکنالوژي ده چې په مختلف غوښتنلیکونو کې د اسانه او دقیق حرکت لپاره اجازه ورکوي. په دې مقاله کې، موږ به د دې قبضې کاري اصول او د هغې احتمالي غوښتنلیکونه وپلټئ.