AOSITE האַרדוואַרע פּרעסיסיאָן מאַנופאַקטורינג קאָ.לטד איז באגאנגען צו הויך קוואַליטעט גאַז פרילינג און יקסעפּשאַנאַל דינסט מאַנשאַפֿט. נאָך עטלעכע יאָרן פון פאָרשונג דורך אונדזער באָקע מאַנשאַפֿט, מיר האָבן גאָר רעוואַלושאַנייזד דעם פּראָדוקט פון מאַטעריאַל צו פונקציאָנירן, יפעקטיוולי ילימאַנייטינג די חסרונות און ימפּרוווינג די קוואַליטעט. מיר אַדאַפּט די לעצטע טעכנאָלאָגיע בעשאַס די מיטלען. דעריבער, דער פּראָדוקט ווערט פאָלקס אין די מאַרק און האט אַ גרעסערע פּאָטענציעל פֿאַר אַפּלאַקיישאַן.
מיר האָבן שטענדיק פאָוקיסט אויף געבן קאַסטאַמערז אַ גרעסערע באַניצער דערפאַרונג און הויך צופֿרידנקייט זינט געגרינדעט. AOSITE האט געטאן אַ גרויס אַרבעט אויף דעם מיסיע. מיר האָבן באקומען אַ פּלאַץ פון positive באַמערקונגען פון קאָאָפּעראַטעד קאַסטאַמערז קאַמפּלאַמענטינג די קוואַליטעט און פאָרשטעלונג פון די פּראָדוקטן. פילע קאַסטאַמערז האָבן פארדינט גרויס עקאָנאָמיש בענעפיץ ינפלואַנסט דורך די ויסגעצייכנט שעם פון אונדזער סאָרט. קוקן צו דער צוקונפֿט, מיר וועלן פאָרזעצן צו מאַכן השתדלות צו צושטעלן מער ינאַווייטיוו און פּרייַז-עפעקטיוו פּראָדוקטן פֿאַר קאַסטאַמערז.
אונדזער דינסט איז שטענדיק ווייַטער פון דערוואַרטונג. ביי AOSITE, מיר טאָן אונדזער בעסטער צו דינען קאַסטאַמערז מיט אונדזער פאַכמאַן סקילז און פאַרטראַכט שטעלונג. אַחוץ פֿאַר הויך-קוואַליטעט גאַז פרילינג און אנדערע פּראָדוקטן, מיר אויך אַפּגרייד זיך צו צושטעלן אַ פול פּעקל פון באַדינונגס ווי מנהג דינסט און שיפּינג דינסט.
צו פאַרפּאָשעטערן די טעמע, מיר וועלן טיילן עס אין צוויי קאַטעגאָריעס: זייַט אָנקלאַפּן און אונטער אָנקלאַפּן. עטלעכע קאַבאַנאַץ נוצן הויפט בארג ריילז, אָבער די זענען ווייניקער פּראָסט.
זייַט בארג
די זייַט מאָונטינג איז דער איינער איר זענען רובֿ מסתּמא צו אַפּגרייד. זיי דערשייַנען אין פּערז און זענען פארבונדן צו יעדער זייַט פון די קאַבינעט שופלאָד. אַ וויכטיק זאַך צו געדענקען איז אַז איר דאַרפֿן צו לאָזן פּלאַץ צווישן די שופלאָד קעסטל און די זייַט פון די קאַבינעט. כּמעט אַלע זייַט מאָונטעד רוק ריילז זענען פארלאנגט ½ "אַזוי ביטע מאַכן זיכער אַז איר האָבן גענוג פּלאַץ.
אונטער באַרג
AOSITEunder mountslides זענען אויך סאָלד אין פּערז, אָבער איר קענען ינסטאַלירן זיי אויף יעדער זייַט פון די דנאָ פון די שופלאָד. דאס זענען פּילקע שייַכעס סלידערז וואָס קענען זיין אַ גרויס מאָדערן עסטעטיש ברירה פֿאַר דיין קיך ווייַל זיי זענען ומזעיק ווען די שופלאָד איז געעפנט. דעם טיפּ פון רוק רעלס ריקווייערז אַ קליין ריס צווישן די שופלאָד זייַט און די קאַבינעט עפן (וועגן 3/16 אינטש צו 14 אינטש אויף יעדער זייַט), און אויך האט זייער ספּעציפיש רעקווירעמענץ פֿאַר די שפּיץ און דנאָ גאַפּס. ביטע אויך טאָן אַז די פּלאַץ פון די דנאָ פון די שופלאָד צו די דנאָ פון די שופלאָד זאָל זיין 1/2 אינטש (די רוק זיך איז יוזשאַוואַלי 5/8 אינטש אָדער טינער).
אָבער, איין זאַך צו האַלטן אין זינען איז אַז אין סדר צו פאַרבייַטן די זייַט מאָונטעד רוק מיט די באַזע רוק, איר מוזן ריבילד די גאנצע שופלאָד קעסטל. דאָס קען נישט זיין די יזיאַסט אַפּגרייד איר קענען מאַכן זיך.
אויב איר נאָר פאַרבייַטן די דאַמידזשד רוק, די הויפּט סיבה פֿאַר איר צו פאַרבייַטן די רוק קען זיין צו אַפּגרייד צו עטלעכע גוט יקספּאַנשאַן אָדער באַוועגונג פאַנגקשאַנז וואָס די קראַנט רוק האט נישט.
ווי פיל טאָן איר ווילן צו פאַרברייטערן פון די רוק? 3/4 עקסטענדעד סליידז קען זיין טשיפּער, אָבער זיי זענען נישט די מערסט באַקוועם צו נוצן, און זיי קען נישט זיין אַפּגריידיד אַזוי פיל ווי די אַלט אָנעס. אויב איר נוצן די גאַנץ פאַרלענגערונג רוק, עס וועט לאָזן די שופלאָד צו זיין גאָר פּולד אויס און די צוריק פון די שופלאָד קענען זיין אַקסעסט מער לייכט.
אויב איר ווילט מער יקספּאַנשאַן, איר קענען אפילו נוצן די אָוווערטראַוואַל רוק, וואָס גייט איין שריט ווייַטער און פאקטיש אַלאַוז די שופלאָד צו גאָר אַרויסגיין פון די קאַבינעט ווען עס איז גאָר יקספּאַנדיד. די שופלאָד קענען זיין גאָר געניצט אפילו אונטער די טיש שפּיץ.
די צוויי הויפּט באַוועגונג פֿעיִקייטן צו קוקן פֿאַר זענען זיך-קלאָוזינג סליידז און ווייך קלאָוזינג סליידז. אויב איר שטופּן אין אַז ריכטונג, די אָטאַמאַטיק קלאָוזינג רוק וועט גאָר פאַרמאַכן די שופלאָד. אן אנדער אָפּציע איז די ווייך קלאָוזינג רוק, וואָס האט אַ דאַמפּער וואָס דזשענטלי קערט צו די שופלאָד ווען איר פאַרמאַכן עס (יעדער ווייך קלאָוזינג רוק קלאָוזיז אויך אויטאָמאַטיש).
נאָך סאַלעקטינג די רוק טיפּ, דער ווייַטער שריט איז צו באַשטימען די פארלאנגט לענג. אויב איר ווילן צו פאַרבייַטן די זייַט אָנקלאַפּן מיט אַ נייַע, די יזיאַסט וועג איז צו מעסטן די יגזיסטינג און פאַרבייַטן עס מיט אַ נייַע מיט דער זעלביקער לענג. אָבער, עס איז אויך גוט צו מעסטן די ינער ייבערפלאַך פון די פראָנט ברעג פון די קאַבינעט צו די צוריק. דעם וועט געבן איר די מאַקסימום טיפקייַט פון די רוק.
אויף די אנדערע האַנט, צו געפֿינען די לענג פּאַסיק פֿאַר די כאַנגגינג רוק, נאָר מעסטן די לענג פון די שופלאָד. די רוק רעלס לענג מוזן גלייַכן די שופלאָד לענג.
די לעצטע וויכטיק אַספּעקט צו באַטראַכטן איז די וואָג איר דאַרפֿן צו שטיצן די רוק. א טיפּיש קיך קאַבינעט שופלאָד רוק זאָל האָבן אַ רייטאַד וואָג פון וועגן 100 פונט, בשעת עטלעכע כעוויער אַפּלאַקיישאַנז (אַזאַ ווי טעקע שופלאָד אָדער עסנוואַרג קאַבינעט ציען-אויס) דאַרפן אַ העכער רייטאַד וואָג פון 150 פונט אָדער מער.
איצט איר וויסן ווו צו אָנהייבן טשוזינג די רעכט רוק פֿאַר דיין קאַבינעט שופלאָד! אויב איר זענט נישט זיכער וואָס איר דאַרפֿן, ביטע פילן פריי צו רופן אונדז.
ווהאַצאַפּפּ: + 86-13929893479 אָדער בליצפּאָסט: aosite01@aosite.com
מיר וועלן פאַרבינדן היגע און פאַרנעמונג פאדערונגען צו פאַרבעסערן די פּערטינאַנס פון פאַכמאַן קאָרסאַז, פאַרבעסערן די געפיל פון געווינען פון פּאַרטיסאַפּייטינג סטודענטן, און ווייַטער יקספּאַנד די בענעפיץ פון קליין, מיטל און מיקראָ ענטערפּריסעס.
די רגע איז צו טאָן אַ גוט אַרבעט פון שטיצן באַדינונגס פֿאַר ענטערפּריסעס. דורך די טשיינאַ פריי האנדעל זאָנע סערוויס נעטוואָרק, טאָן אַ גוט אַרבעט פון אינפֿאָרמאַציע מעלדונג און אָנליין באַראַטונג צו פאַסילאַטייט דיסקאַונץ פון פאַרנעמונג אָנפרעג העסקעם. מיר וועלן אויך העלפֿן סאָלווע די פראבלעמען וואָס זענען געפּלאָנטערט אין דעם פּראָצעס פון ניצן די העסקעם אין די נוצן פון די העסקעם. מוטיקן לאָוקאַליטיז צו אַקטיוולי דורכפירן די קאַנסטראַקשאַן פון ציבור סערוויס פּלאַטפאָרמס פֿאַר פריי האַנדל אַגרימאַנץ, און צושטעלן גיידליינז פֿאַר פאַרנעמונג אַפּלאַקיישאַנז און געניסן די כּללים פון די העסקעם און נוצן די כּללים פון די העסקעם.
די דריט איז צו פארשטארקן די קאַנסטראַקשאַן פון די RCEP מעקאַניזאַם. מיר וועלן האַלטן די ערשטער באַגעגעניש פון די שלאָס קאַמיטי פון די RCEP אַגרעעמענט ווי באַלד ווי מעגלעך מיט יעדער מיטגליד צו דיסקוטירן פֿאַרבונדענע ענינים שייַכות צו די פּראָצעדור כּללים פון די שלאָס קאמיטעט, די צאָל היסכייַוועס טיש, און די ימפּלאַמענטיישאַן פון די כּללים פון אָנהייב, און צושטעלן אַ האַרט גאַראַנטירן פֿאַר די הויך קוואַליטעט ימפּלאַמענטיישאַן פון RCEP.
ווי פילע מענטשן באַצאָלן ופמערקזאַמקייַט צו די קיך זינקען ווען דעקערייטינג? די זינקען איז אַ הויזגעזינד נומער וואָס איז געניצט זייער אָפט אין דער קיך. אויב איר טאָן ניט קלייַבן עס געזונט, אַ קאַטאַסטראָפע פֿילם וועט זיין סטיידזשד יעדער מינוט. שימל, וואַסער ליקאַדזש, ייַנבראָך ... איך ווילן צו וויסן די קיך זינקען. ווי צו קלייַבן? איין טאַנק אָדער טאָפּל טאַנק? אויבן טאָמבאַנק בעקן אָדער אונטער טאָמבאַנק בעקן? ונטער, אַ סעריע פון סעלעקציע גוידעס פֿאַר קיך זינקען זענען אָרגאַניזירט.
1. וואָס מאַטעריאַל זאָל איך קלייַבן פֿאַר די זינקען?
פּראָסט זינקען מאַטעריאַלס אַרייַננעמען ומבאַפלעקט שטאָל, שטיין, סעראַמיקס, אאז"ו ו. רובֿ משפחות קלייַבן ומבאַפלעקט שטאָל סינקס, פון קורס, די ספּעציפיש ברירה דעפּענדס אויף די נוסח.
ומבאַפלעקט שטאָל זינקען
ווי די מערסט פּראָסט זינקען מאַטעריאַל אויף די מאַרק, ומבאַפלעקט שטאָל סינקס זענען העכסט פּרייַז-עפעקטיוו און פאָלקס מיט אַלעמען.
אַדוואַנטאַגעס: אַנטיבאַקטיריאַל, היץ-קעגנשטעליק, טראָגן-קעגנשטעליק און פלעק-קעגנשטעליק, ליכט וואָג, גרינג צו ריין און לאַנג דינסט לעבן.
דיסאַדוואַנטידזשיז: עס איז גרינג צו לאָזן סקראַטשיז, אָבער עס קענען זיין באַקומען נאָך ספּעציעל באַהאַנדלונג אַזאַ ווי צייכענונג.
Abstract: The rotational stiffness of the zero-stiffness flexible hinge is approximately zero, which overcomes the defect that ordinary flexible hinges require driving torque, and can be applied to flexible grippers and other fields. Taking the inner and outer ring flexible hinges under the action of pure torque as the positive stiffness subsystem, the research Negative stiffness mechanism and matching positive and negative stiffness can construct zero stiffness flexible hinge. Propose a negative stiffness rotation mechanism——Crank spring mechanism, modeled and analyzed its negative stiffness characteristics; by matching positive and negative stiffness, analyzed the influence of structural parameters of crank spring mechanism on zero stiffness quality; proposed a linear spring with customizable stiffness and size——Diamond-shaped leaf spring string, the stiffness model was established and the finite element simulation verification was carried out; finally, the design, processing and testing of a compact zero-stiffness flexible hinge sample were completed. The test results showed that: under the action of pure torque,±18°In the range of rotation angles, the rotational stiffness of the zero-stiffness flexible hinge is 93% lower than that of the inner and outer ring flexible hinges on average. The constructed zero-stiffness flexible hinge has a compact structure and high-quality zero-stiffness; the proposed negative-stiffness rotation mechanism and the linear The spring has great reference value for the study of flexible mechanism.
0 Preface
Flexible hinge (bearing)
[1-2]
Relying on the elastic deformation of the flexible unit to transmit or convert motion, force and energy, it has been widely used in precision positioning and other fields. Compared with traditional rigid bearings, there is a restoring moment when the flexible hinge rotates. Therefore, the drive unit needs to provide output torque to drive and Keep the rotation of the flexible hinge. Zero stiffness flexible hinge
[3]
(Zero stiffness flexural pivot, ZSFP) is a flexible rotary joint whose rotational stiffness is approximately zero. This type of flexible hinge can stay at any position within the stroke range, also known as static balance flexible hinge
[4]
, are mostly used in fields such as flexible grippers.
Based on the modular design concept of the flexible mechanism, the entire zero-stiffness flexible hinge system can be divided into two subsystems of positive and negative stiffness, and the zero-stiffness system can be realized through the matching of positive and negative stiffness
[5]
. Among them, the positive stiffness subsystem is usually a large-stroke flexible hinge, such as a cross-reed flexible hinge
[6-7]
, generalized three-cross reed flexible hinge
[8-9]
and inner and outer ring flexible hinges
[10-11]
etc. At present, the research on flexible hinges has achieved a lot of results, therefore, the key to design zero-stiffness flexible hinges is to match suitable negative stiffness modules for flexible hinges[3].
Inner and outer ring flexible hinges (Inner and outer ring flexural pivots, IORFP) have excellent characteristics in terms of stiffness, precision and temperature drift. The matching negative stiffness module provides the construction method of the zero-stiffness flexible hinge, and finally, completes the design, sample processing and testing of the zero-stiffness flexible hinge.
1 crank spring mechanism
1.1 Definition of negative stiffness
The general definition of stiffness K is the rate of change between the load F borne by the elastic element and the corresponding deformation dx
K= dF/dx (1)
When the load increment of the elastic element is opposite to the sign of the corresponding deformation increment, it is negative stiffness. Physically, the negative stiffness corresponds to the static instability of the elastic element
[12]
.Negative stiffness mechanisms play an important role in the field of flexible static balance. Usually, negative stiffness mechanisms have the following characteristics.
(1) The mechanism reserves a certain amount of energy or undergoes a certain deformation.
(2) The mechanism is in a critical instability state.
(3) When the mechanism is slightly disturbed and leaves the equilibrium position, it can release a larger force, which is in the same direction as the movement.
1.2 Construction principle of zero-stiffness flexible hinge
The zero-stiffness flexible hinge can be constructed by using positive and negative stiffness matching, and the principle is shown in Figure 2.
(1) Under the action of pure torque, the inner and outer ring flexible hinges have an approximately linear torque-rotation angle relationship, as shown in Figure 2a. Especially, when the intersection point is located at 12.73% of the reed length, the torque-rotation angle relationship is linear
[11]
, at this time, the restoring moment Mpivot (clockwise direction) of the flexible hinge is related to the bearing rotation angleθ(counterclockwise) the relationship is
Mpivot=(8EI/L)θ (2)
In the formula, E is the elastic modulus of the material, L is the length of the reed, and I is the moment of inertia of the section.
(2) According to the rotational stiffness model of the inner and outer ring flexible hinges, the negative stiffness rotating mechanism is matched, and its negative stiffness characteristics are shown in Figure 2b.
(3) In view of the instability of the negative stiffness mechanism
[12]
, the stiffness of the zero-stiffness flexible hinge should be approximately zero and greater than zero, as shown in Figure 2c.
1.3 Definition of crank spring mechanism
According to literature [4], a zero-stiffness flexible hinge can be constructed by introducing a pre-deformed spring between the moving rigid body and the fixed rigid body of the flexible hinge. For the inner and outer ring flexible hinge shown in FIG. 1, a spring is introduced between the inner ring and the outer ring, I .e., a spring-crank mechanisms (SCM) is introduced. Referring to the crank slider mechanism shown in Figure 3, the related parameters of the crank spring mechanism are shown in Figure 4. The crank-spring mechanism is composed of a crank and a spring (set stiffness as k). the initial angle is the included angle between the crank AB and the base AC when the spring is not deformed. R represents the crank length, l represents the base length, and defines the crank length ratio as the ratio of r to l, I .e. = r/l (0<<1).
The construction of the crank-spring mechanism requires the determination of 4 parameters: the base length l, the crank length ratio , the initial angle and the spring stiffness K.
The deformation of the crank spring mechanism under force is shown in Figure 5a, at the moment M
γ
Under the action, the crank moves from the initial position AB
Beta
turn to AB
γ
, during the rotation process, the included angle of the crank relative to the horizontal position
γ
called the crank angle.
Qualitative analysis shows that the crank rotates from AB (initial position, M & gamma; Zero) to AB0 (“dead point”location, M
γ
is zero), the crank-spring mechanism has a deformation with negative stiffness characteristics.
1.4 The relationship between torque and rotation angle of crank spring mechanism
In Fig. 5, the torque M & gamma; clockwise is positive, the crank angle & gamma; counterclockwise is positive, and the moment load M is modeled and analyzed below.
γ
with crank angle
γ
The relationship between the modeling process is dimensioned.
As shown in Figure 5b, the torque balance equation for crank AB & gamma is listed.
In the formula, F & gamma; is the spring restoring force, d & gamma; is F & gamma; to point A. Assume that the displacement-load relation of the spring is
In the formula, K is the spring stiffness (not necessarily a constant value),δ
xγ
is the amount of spring deformation (shortened to positive),δ
xγ
=|B
Beta
C| – |B
γ
C|.
Simultaneous type (3)(5), moment M
γ
with corner
γ
The relationship is
1.5 Analysis of the negative stiffness characteristics of the crank-spring mechanism
In order to facilitate the analysis of the negative stiffness characteristics of the crank-spring mechanism (moment M
γ
with corner
γ
relationship), it may be assumed that the spring has a linear positive stiffness, then formula (4) can be rewritten as
In the formula, Kconst is a constant greater than zero. After the size of the flexible hinge is determined, the length l of the base is also determined. Therefore, assuming that l is a constant, formula (6) can be rewritten as
where Kconstl2 is a constant greater than zero, and the moment coefficient m & gamma; has a dimension of one. The negative stiffness characteristics of the crank-spring mechanism can be obtained by analyzing the relationship between the torque coefficient m & gamma; and the rotation angle & gamma.
From equation (9), Figure 6 shows the initial angle =π relationship between m & gamma; and crank length ratio and rotation angle & gamma;, & isin;[0.1, 0.9],& gamma;& isin;[0, π]. Figure 7 shows the relationship between m & gamma; and rotation angle & gamma; for = 0.2 and different . Figure 8 shows =π When, under different , the relationship between m & gamma; and angle & gamma.
According to the definition of crank spring mechanism (section 1.3) and formula (9), when k and l are constant, m & gamma; Only related to angle & gamma;, crank length ratio and crank initial angle .
(1) If and only if & gamma; is equal to 0 orπ or ,m & gamma; is equal to zero; & gamma; & isin;[0, ],m & gamma; is greater than zero; & gamma; & isin;[,π],m & gamma; less than zero. & isin;[0, ],m & gamma; is greater than zero; & gamma;& isin;[,π],m & gamma; less than zero.
(2) & gamma; When [0, ], the rotation angle & gamma; increases, m & gamma; increases from zero to the inflection point angle & gamma;0 takes the maximum value m & gamma;max, and then gradually decreases.
(3) The negative stiffness characteristic range of the crank spring mechanism: & gamma;& isin;[0, & gamma;0], at this time & gamma; increases (counterclockwise), and the torque M & gamma; increases (clockwise). The inflection point angle & gamma;0 is the maximum rotation angle of the negative stiffness characteristic of the crank-spring mechanism and & gamma;0 & isin;[0, ];m & gamma;max is the maximum negative moment coefficient. Given and , the derivation of equation (9) yields & gamma;0
(4) the larger the initial angle , & gamma; the larger 0, m
γmax
bigger.
(5) the larger the length ratio , & gamma; the smaller 0, m
γmax
bigger.
In particular, =πThe negative stiffness characteristics of the crank spring mechanism are the best (the negative stiffness angle range is large, and the torque that can be provided is large). =πAt the same time, under different conditions, the maximum rotation angle & gamma of the negative stiffness characteristic of the crank spring mechanism; 0 and the maximum negative torque coefficient m & gamma; Max is listed in table 1.
parameter | value | ||||
crank length ratio | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
Maximum turning angle & gamma; 0 /rad | 0.98 | 0.91 | 0.84 | 0.76 | 0.68 |
Maximum moment coefficient m γmax | 0.013 | 0.055 | 0.13 | 0.23 | 0.37 |
2 Construction of zero-stiffness flexible hinge
The matching of positive and negative stiffness of the 2.1 is shown in Figure 9, n(n 2) groups of parallel crank spring mechanisms are evenly distributed around the circumference, forming a negative stiffness mechanism matched with the inner and outer ring flexible hinges.
Using the inner and outer ring flexible hinges as the positive stiffness subsystem, construct a zero-stiffness flexible hinge. In order to achieve zero stiffness, match the positive and negative stiffness
simultaneous (2), (3), (6), (11), and & gamma;=θ, the load F & gamma of the spring can be obtained; and displacementδThe relationship of x & gamma; is
According to section 1.5, the negative stiffness angle range of the crank spring mechanism: & gamma;& isin;[0, & gamma;0] and & gamma;0 & isin;[0, ], the stroke of the zero stiffness flexible hinge shall be less than & gamma;0, I .e. the spring is always in a deformed state (δxγ≠0). The rotation range of the inner and outer ring flexible hinges is±0.35 rad(±20°), simplify the trigonometric functions sin & gamma; and cos & gamma; as follows
After simplification, the load-displacement relationship of the spring
2.2 Error analysis of positive and negative stiffness matching model
Evaluate the error caused by the simplified treatment of equation (13). According to the actual processing parameters of zero stiffness flexible hinge (Section 4.2):n = 3,l = 40mm, =π, = 0.2,E = 73 GPa; The dimensions of the inner and outer ring flexible hinge reed L = 46mm,T = 0.3mm,W = 9.4mm; The comparison formulas (12) and (14) simplify the load displacement relationship and relative error of the front and rear springs as shown in Figures 10a and 10b respectively.
As shown in Figure 10, & gamma; is less than 0.35 rad (20°), the relative error caused by the simplified treatment to the load-displacement curve does not exceed 2.0%, and the formula
The simplified treatment of (13) can be used to construct zero-stiffness flexible hinges.
2.3 Stiffness characteristics of the spring
Assuming the stiffness of the spring is K, the simultaneous (3), (6), (14)
According to the actual processing parameters of zero stiffness flexible hinge (Section 4.2), the change curve of spring stiffness K with angle & gamma; is shown in Figure 11. In particular, when & gamma;= 0, K takes the minimum value.
For the convenience of design and processing, the spring adopts a linear positive stiffness spring, and the stiffness is Kconst. In the whole stroke, if the total stiffness of the zero stiffness flexible hinge is greater than or equal to zero, Kconst should take the minimum value of K
Equation (16) is the stiffness value of the linear positive stiffness spring when constructing the zero stiffness flexible hinge. 2.4 Analysis of zero-stiffness quality The load-displacement relationship of the constructed zero-stiffness flexible hinge is
Simultaneous formula (2), (8), (16) can be obtained
In order to evaluate the quality of zero stiffness, the reduction range of flexible hinge stiffness before and after adding the negative stiffness module is defined as the zero stiffness quality coefficientη
η The closer to 100%, the higher the quality of zero stiffness. Figure 12 is 1-η Relationship with crank length ratio and initial angle η It is independent of the number n of parallel crank-spring mechanisms and the length l of the base, but only related to the crank length ratio , the rotation angle & gamma; and the initial angle .
(1) The initial angle increases and the zero stiffness quality improves.
(2) The length ratio increases and the zero stiffness quality decreases.
(3) Angle & gamma; increases, zero stiffness quality decreases.
In order to improve the zero stiffness quality of the zero stiffness flexible hinge, the initial angle should take a larger value; the crank length ratio should be as small as possible. At the same time, according to the analysis results in Section 1.5, if is too small, the ability of the crank-spring mechanism to provide negative stiffness will be weak. In order to improve the zero stiffness quality of the zero stiffness flexible hinge, the initial angle =π, crank length ratio = 0.2, that is, the actual processing parameters of section 4.2 zero stiffness flexible hinge.
According to the actual processing parameters of the zero-stiffness flexible hinge (Section 4.2), the torque-angle relationship between the inner and outer ring flexible hinges and the zero-stiffness flexible hinge is shown in Figure 13; the decrease in stiffness is the zero-stiffness quality coefficientηThe relationship with the corner & gamma; is shown in Figure 14. By Figure 14: In 0.35 rad (20°) rotation range, the stiffness of the zero-stiffness flexible hinge is reduced by an average of 97%; 0.26 rad(15°) corners, it is reduced by 95%.
3 Design of linear positive stiffness spring
The construction of zero stiffness flexible hinge is usually after the size and stiffness of the flexible hinge are determined, and then the stiffness of the spring in the crank spring mechanism is reversed, so the stiffness and size requirements of the spring are relatively strict. In addition, the initial angle =π, from Figure 5a, during the rotation of the zero-stiffness flexible hinge, the spring is always in a compressed state, that is“Compression spring”.
The stiffness and size of traditional compression springs are difficult to customize precisely, and a guide mechanism is often required in applications. Therefore, a spring whose stiffness and size can be customized is proposed——Diamond-shaped leaf spring string. The diamond-shaped leaf spring string (Figure 15) is composed of multiple diamond-shaped leaf springs connected in series. It has the characteristics of free structural design and high degree of customization. Its processing technology is consistent with that of flexible hinges, and both are processed by precision wire cutting.
3.1 Load-displacement model of diamond-shaped leaf spring string
Due to the symmetry of the rhombic leaf spring, only one leaf spring needs to be subjected to stress analysis, as shown in Figure 16. α is the angle between the reed and the horizontal, the length, width and thickness of the reed are Ld, Wd, Td respectively, f is the dimensionally unified load on the rhombus leaf spring,δy is the deformation of rhombic leaf spring in the y direction, force fy and moment m are equivalent loads on the end of a single reed, fv and fw are component forces of fy in the wov coordinate system.
According to the beam deformation theory of AWTAR[13], the dimensionally unified load-displacement relation of single reed
Due to the constraint relationship of the rigid body on the reed, the end angle of the reed before and after deformation is zero, that isθ = 0. Simultaneous (20)(22)
Equation (23) is the load-displacement dimensional unification model of rhombic leaf spring. n2 rhombic leaf springs are connected in series, and its load-displacement model is
From formula (24), whenαWhen d is small, the stiffness of the diamond-shaped leaf spring string is approximately linear under typical dimensions and typical loads.
3.2 Finite element simulation verification of the model
The finite element simulation verification of the load-displacement model of the diamond-shaped leaf spring is carried out. Using ANSYS Mechanical APDL 15.0, the simulation parameters are shown in Table 2, and a pressure of 8 N is applied to the diamond-shaped leaf spring.
parameter | value |
Material | AL7075-T6 |
Reed length L of /mm | 18 |
Reed width W of /mm | 10 |
Reed Thickness T of /mm | 0.25 |
reed inclination angleα/° | 10/20/30/40 |
Elastic modulus E/GPa | 73 |
The comparison between the model results and the simulation results of the rhombus leaf spring load-displacement relationship is shown in Fig. 17 (dimensionalization). For four rhombus leaf springs with different inclination angles, the relative error between the model and the finite element simulation results does not exceed 1.5%. The validity and accuracy of the model (24) has been verified.
4 Design and test of zero-stiffness flexible hinge
4.1 Parameter design of zero-stiffness flexible hinge
To design a zero-stiffness flexible hinge, the design parameters of the flexible hinge should be determined according to the service conditions first, and then the relevant parameters of the crank spring mechanism should be calculated inversely.
4.1.1 Flexible hinge parameters
The intersection point of the inner and outer ring flexible hinges is located at 12.73% of the reed length, and its parameters are shown in Table 3. Substituting into equation (2), the torque-rotation angle relationship of the inner and outer ring flexible hinges is
parameter | value |
Material | AL7075-T6 |
Reed length L/mm | 46 |
Reed width W/mm | 9.4 |
Reed Thickness T/mm | 0.30 |
Elastic modulus E/GPa | 73 |
4.1.2 Negative stiffness mechanism parameters
As shown in fig. 18, taking the number n of crank spring mechanisms in parallel as 3, the length l = 40 mm is determined by the size of the flexible hinge. according to the conclusion of section 2.4, the initial angle =π, crank length ratio = 0.2. According to equation (16), the stiffness of the spring (I .e. diamond leaf spring string) is Kconst = 558.81 N/m (26)
4.1.3 Diamond leaf spring string parameters
by l = 40mm, =π, = 0.2, the original length of the spring is 48mm, and the maximum deformation (& gamma;= 0) is 16mm. Due to structural limitations, it is difficult for a single rhombus leaf spring to produce such a large deformation. Using four rhombus leaf springs in series (n2 = 4), the stiffness of a single rhombus leaf spring is
Kd=4Kconst=2235.2 N/m (27)
According to the size of the negative stiffness mechanism (Figure 18), given the reed length, width and reed inclination angle of the diamond-shaped leaf spring, the reed can be deduced from formula (23) and the stiffness formula (27) of the diamond-shaped leaf spring Thickness. The structural parameters of rhombus leaf springs are listed in Table 4.
surface4
In summary, the parameters of the zero-stiffness flexible hinge based on the crank spring mechanism have all been determined, as shown in Table 3 and Table 4.
4.2 Design and processing of the zero-stiffness flexible hinge sample Refer to literature [8] for the processing and testing method of the flexible hinge. The zero-stiffness flexible hinge is composed of a negative stiffness mechanism and an inner and outer ring flexible hinge in parallel. The structural design is shown in Figure 19.
Both the inner and outer ring flexible hinges and diamond-shaped leaf spring strings are processed by precision wire-cutting machine tools. The inner and outer ring flexible hinges are processed and assembled in layers. Figure 20 is the physical picture of three sets of diamond-shaped leaf spring strings, and Figure 21 is the assembled zero-stiffness The physical picture of the flexible hinge sample.
4.3 The rotational stiffness test platform of the zero-stiffness flexible hinge Referring to the rotational stiffness test method in [8], the rotational stiffness test platform of the zero-stiffness flexible hinge is built, as shown in Figure 22.
4.4 Experimental data processing and error analysis
The rotational stiffness of the inner and outer ring flexible hinges and zero-stiffness flexible hinges was tested on the test platform, and the test results are shown in Figure 23. Calculate and draw the zero-stiffness quality curve of the zero-stiffness flexible hinge according to formula (19), as shown in Fig. 24.
The test results show that the rotational stiffness of the zero-stiffness flexible hinge is close to zero. Compared with the inner and outer ring flexible hinges, the zero-stiffness flexible hinge±0.31 rad(18°) stiffness was reduced by an average of 93%; 0.26 rad (15°), the stiffness is reduced by 90%.
As shown in Figures 23 and 24, there is still a certain gap between the test results of the zero stiffness quality and the theoretical model results (the relative error is less than 15%), and the main reasons for the error are as follows.
(1) The model error caused by the simplification of trigonometric functions.
(2) Friction. There is friction between the diamond leaf spring string and the mounting shaft.
(3) Processing error. There are errors in the actual size of the reed, etc.
(4) Assembly error. The gap between the installation hole of the diamond-shaped leaf spring string and the shaft, the installation gap of the test platform device, etc.
4.5 Performance comparison with a typical zero-stiffness flexible hinge In literature [4], a zero-stiffness flexible hinge ZSFP_CAFP was constructed using a cross-axis flexural pivot (CAFP), as shown in Figure 25.
Comparison of the zero-stiffness flexible hinge ZSFP_IORFP (Fig. 21) and ZSFP_CAFP (Fig. 25) constructed using the inner and outer ring flexible hinges
(1) ZSFP_IORFP, the structure is more compact.
(2) The corner range of ZSFP_IORFP is small. The corner range is limited by the corner range of the flexible hinge itself; the corner range of ZSFP_CAFP80°, ZSFP_IORFP corner range40°.
(3) ±18°In the range of corners, ZSFP_IORFP has higher quality of zero stiffness. The average stiffness of ZSFP_CAFP is reduced by 87%, and the average stiffness of ZSFP_IORFP is reduced by 93%.
5 Conclusion
Taking the flexible hinge of the inner and outer rings under pure torque as the positive stiffness subsystem, the following work has been done in order to construct a zero-stiffness flexible hinge.
(1) Propose a negative stiffness rotation mechanism——For the crank spring mechanism, a model (Formula (6)) was established to analyze the influence of structural parameters on its negative stiffness characteristics, and the range of its negative stiffness characteristics was given (Table 1).
(2) By matching the positive and negative stiffnesses, the stiffness characteristics of the spring in the crank spring mechanism (Equation (16)) are obtained, and the model (Equation (19)) is established to analyze the effect of the structural parameters of the crank spring mechanism on the zero stiffness quality of the zero stiffness flexible hinge Influence, theoretically, within the available stroke of the flexible hinge of the inner and outer rings (±20°), the average reduction in stiffness can reach 97%.
(3) Propose a customizable stiffness“spring”——A diamond-shaped leaf spring string was established to establish its stiffness model (Equation (23)) and verified by finite element method.
(4) Completed the design, processing and testing of a compact zero-stiffness flexible hinge sample. The test results show that: under the action of pure torque, the36°In the range of rotation angles, compared with the inner and outer ring flexible hinges, the stiffness of the zero-stiffness flexible hinge is reduced by 93% on average.
The constructed zero-stiffness flexible hinge is only under the action of pure torque, which can realize“zero stiffness”, without considering the case of bearing complex loading conditions. Therefore, the construction of zero-stiffness flexible hinges under complex load conditions is the focus of further research. In addition, reducing the friction that exists during the movement of zero-stiffness flexible hinges is an important optimization direction for zero-stiffness flexible hinges.
references
[1] HOWELL L L. Compliant Mechanisms[M]. New York: John Wiley&Sons, Inc, 2001.
[2] Yu Jingjun, Pei Xu, Bi Shusheng, etc. Research progress on design methods of flexible hinge mechanism[J]. Chinese Journal of Mechanical Engineering, 2010, 46(13):2-13. Y u jin champion, PEI X U, BIS call, ETA up. State-of-arts of Design Method for Flexure Mechanisms[J]. Journal of Mechanical Engineering, 2010, 46(13):2-13.
[3] MORSCH F M, Herder J L. Design of a Generic Zero Stiffness Compliant Joint[C]// ASME International Design Engineering Conferences. 2010:427-435.
[4] MERRIAM E G, Howell L L. Non-dimensional approach for static balancing of rotational flexures[J]. Mechanism & Machine Theory, 2015, 84(84):90-98.
[5] HOETMER K, Woo G, Kim C, et al. Negative Stiffness Building Blocks for Statically Balanced Compliant Mechanisms: Design and Testing[J]. Journal of Mechanisms & Robotics, 2010, 2(4):041007.
[6] JENSEN B D, Howell L L. The modeling of cross-axis flexural pivots[J]. Mechanism and machine theory, 2002, 37(5):461-476.
[7] WITTRICK W H. The properties of crossed flexure pivots and the influence of the point at which the strips cross[J]. The Aeronautical Quarterly, 1951, II: 272-292.
[8] l IU l, BIS, yang Q, ETA. Design and experiment of generalized triple-cross-spring flexure pivots applied to the ultra-precision instruments[J]. Review of Scientific Instruments, 2014, 85(10): 105102.
[9] Yang Qizi, Liu Lang, Bi Shusheng, etc. Research on rotational stiffness characteristics of generalized three-cross reed flexible hinge[J]. Chinese Journal of Mechanical Engineering, 2015, 51(13): 189-195.
yang Q I word, l IU Lang, BIS voice, ETA. Rotational Stiffness Characterization of Generalized Triple-cross-spring Flexure Pivots[J]. Journal of Mechanical Engineering, 2015, 51(13):189-195.
[10] l IU l, Zhao H, BIS, ETA. Research of Performance Comparison of Topology Structure of Cross-Spring Flexural Pivots[C]// ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, August 17–20, 2014, Buffalo, New York, USA. ASME, 2014 : V05AT08A025.
[11] l IU l, BIS, yang Q. Stiffness characteristics of inner–outer ring flexure pivots applied to the ultra-precision instruments[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989-1996 (vols 203-210), 2017:095440621772172.
[12] SANCHEZ J A G. Criteria for the Static Balancing of Compliant Mechanisms[C]// ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, August 15–18, 2010, Montreal, Quebec, Canada. ASME, 2010:465-473.
[13] AWTAR S, Sen S. A generalized constraint model for two-dimensional beam flexures: Nonlinear strain energy formulation[J]. Journal of Mechanical Design, 2010, 132: 81009.
About the author: Bi Shusheng (corresponding author), male, born in 1966, doctor, professor, doctoral supervisor. His main research direction is fully flexible mechanism and bionic robot.
AOSITE Hardware always sticks to our tenet of "quality comes first" by focusing on the quality control, service improvement, and fast response.
AOSITE Hardware has devoted to the development, manufacturing, marketing and sales of since its inception.Our cooperate tenet is .Hinge is applicable to many fields specifically including food and beverage, pharmaceutical, daily necessities, hotel supplies, metal materials, agriculture, chemicals, electronics, and machinery.With advanced welding, cutting, polishing, and other production technology supported and staff backed up, AOSITE Hardware promises flawless products and considerate service provided to customers.
1. Production technology: With years of accumulation, we have enough capabilities to improve the production process. Advanced technology including welding, chemical etching, surface blasting, and polishing contributes to the superior performance of the products.
Our company's Drawer Slides are strictly manufactured through a number of professional processing procedures, and they meet national quality inspection standards. For one thing, our products are in line with modern aesthetics, with stylish and good appearance and the performance is excellent. For another thing, they are not easy to get rusty and to be scratched, with strong anti-corrosion and anti-rust ability. Based on all features, our products are suitable for indoor and outdoor.AOSITE Hardware was successfully registered in . Over the past years, we have constantly learned the electric equipment production experience from excellent enterprises. Meanwhile, we have established friendly and long-term co-operations with many companies. We have greatly improved our company's influence.If the return is caused by the product quality or the mistake from us, you will be guaranteed to get 100% refund.When conducting a research on Zero Stiffness Flexible Hinge based on Crank Spring Mechanism, it is important to understand the concept of hinge knowledge and its application in engineering and design. Here are some frequently asked questions regarding this topic.
גאַנץ פאַרלענגערונג שופלאָד סליידז זענען אַ זייער פּראַקטיש היים באַפּוצונג, וואָס קענען יפעקטיוולי פֿאַרבעסערן די עפעקטיווקייַט פון היים נוצן. אָבער, ווען פילע מענטשן קלייַבן פול פאַרלענגערונג שופלאָד סליידז, זיי אָפט האָבן אַ פּראָבלעם, דאָס איז, ווי צו קלייַבן פול פאַרלענגערונג שופלאָד סליידז מיט די ריכטיק לענג. דאָס איז נישט אַן גרינג פּראָבלעם, ווייַל טשוזינג די אומרעכט לענג קען זיין ומבאַקוועם אָדער אפילו געפערלעך. ונטער, דער אַרטיקל וועט פאָרשטעלן ווי צו קלייַבן די ריכטיק לענג פון פול פאַרלענגערונג שופלאָד סליידז צו העלפן איר קויפן די רעכט פּראָדוקט.
ערשטער פון אַלע, מיר דאַרפֿן צו וויסן וואָס די לענג פון די פול פאַרלענגערונג שופלאָד סליידז איז. די לענג פון פול פאַרלענגערונג שופלאָד סליידז רעפערס צו די פאַקטיש לענג פון די שופלאָד רוק רעלס, וואָס כולל די סוף אינסטאַלירן אויף די וואַנט אָדער די ינער וואַנט פון די גאַרדעראָב און די לענג פון די רוק רעלס פּראָוטרודינג. אין אַלגעמיין, די לענג פון פול פאַרלענגערונג שופלאָד סליידז האט פילע ספּעסאַפאַקיישאַנז, ריינדזשינג פון 200 מם צו 1200 מם, אַזוי איר מוזן קלייַבן לויט די פאַקטיש סיטואַציע ווען טשוזינג.
צווייטנס, וואָס מיר דאַרפֿן צו וויסן איז די גרייס און ינסטאַלירונג אופֿן פון די פול פאַרלענגערונג שופלאָד סליידז. ווען טשוזינג די לענג פון פול פאַרלענגערונג שופלאָד סליידז, מיר אויך דאַרפֿן צו באַטראַכטן די גרייס פון דעם שופלאָד און ווי עס וועט זיין אינסטאַלירן. די גרעסערע די שופלאָד גרייס, די מער די פארלאנגט פול פאַרלענגערונג שופלאָד סליידז. אין דער זעלביקער צייט, ווען טשוזינג די לענג פון פול פאַרלענגערונג שופלאָד סליידז, מיר אויך דאַרפֿן צו באַטראַכטן די ייַנמאָנטירונג אופֿן, ווייַל עטלעכע ייַנמאָנטירונג מעטהאָדס קען ווירקן די לענג סעלעקציע פון פול פאַרלענגערונג שופלאָד סליידז.
די ביגאַסט פּראָבלעם ליגט אין די קייט פון די לענג פון די פול פאַרלענגערונג שופלאָד סליידז. אויב די לענג איז אויסגעקליבן צו זיין גרויס, עס וועט זיין מער שווער צו ינסטאַלירן. אויב די לענג איז אויסגעקליבן צו זיין קליין, די שופלאָד וועט לויפן אַוועק אָדער האָבן דזשאַמינג, וואָס וועט ווירקן די נוצן דערפאַרונג, אָבער אויך פאַרשאַפן ומנייטיק שעדיקן.
אין דערצו, ווען טשוזינג די לענג פון פול פאַרלענגערונג שופלאָד סליידז, מיר אויך דאַרפֿן צו באַטראַכטן די מאַסע-שייַכעס קאַפּאַציטעט פון די פּאָליצע. אויב די שופלאָד איז פול פון זאכן, די דרוק אויף די פול פאַרלענגערונג שופלאָד סליידז וועט זיין זייער הויך, אַזוי מיר דאַרפֿן צו קלייַבן פול פאַרלענגערונג שופלאָד סליידז מיט אַ גרעסערע מאַסע קאַפּאַציטעט. אין אַלגעמיין, די מאַסע קאַפּאַציטעט פון פול פאַרלענגערונג שופלאָד סליידז וועט זיין דיסקרייבד אין דעטאַל אין די פּראָדוקט מאַנואַל.
אין אַדישאַן צו די אויבן ווייזט, מיר אויך דאַרפֿן צו באַצאָלן ופמערקזאַמקייט צו די ברירה פון בראַנדז און קויפן טשאַנאַלז. אויב איר קלייַבן אַ סאָרט מיט אַ גוט שעם, די קוואַליטעט וועט זיין לעפיערעך געראַנטיד. אין דער זעלביקער צייט, ווען פּערטשאַסינג פול פאַרלענגערונג שופלאָד סליידז, מיר מוזן אויך קלייַבן רעגולער קויפן טשאַנאַלז, אַזוי צו ויסמיידן די ימערדזשאַנס פון שווינדל און ערגער פּראָדוקטן.
ווען טשוזינג די ריכטיק לענג פון פול געשפּרייט שופלאָד סליידז , מיר דאַרפֿן צו באַטראַכטן סיבות אַזאַ ווי די גרייס פון דעם שופלאָד, ינסטאַלירונג אופֿן, מאַסע קאַפּאַציטעט, סאָרט און קויפן קאַנאַל. בלויז דורך פולשטענדיק קאַנסידערינג די סיבות, איר קענען קלייַבן די פול פאַרלענגערונג שופלאָד סליידז וואָס פּאַסן איר און פֿאַרבעסערן די טרייסט און עפעקטיווקייַט פון שטוב לעבן.
1 אַרבעט פּרינציפּ:
ווי טוט אַ שופלאָד רוק אַרבעט?
פון וואָס מעטאַל זענען שופלאָד סליידז?
2. ייַנמאָנטירונג און וישאַלט:
ווי צו ינסטאַלירן באַלל שייַכעס סליידז
ווי טוט אַ שופלאָד רוק אַרבעט?
ווי צו ינסטאַלירן מעטאַל שופלאָד סליידז
גייד צו ווי צו ינסטאַלירן מעטאַל שופלאָד סליידז?
3. פּראָדוקט רעקאַמאַנדיישאַנז:
די ריכטיק לענג פון גאַנץ-געשפּרייט שופלאָד רוק
שופלאָד סליידז סעלעקציע גייד: טייפּס, פֿעיִקייטן, אַפּפּליקאַטיאָנס
המון: +86 13929893479
עקראַן: +86 13929893479
פֿאָרױסװײַז: aosite01@aosite.com
אַדרעס: דזשינשענג ינדוסטריאַל פּאַרק, דזשינלי טאַון, גאַויאַאָ דיסטריקט, זשאַאָקינג סיטי, גואַנגדאָנג, טשיינאַ